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A careful study of the behavior of a Godunov-projection method
for the incompressible Navier—Stokes equations as a function of the
resolution of the computational mesh is presented. By considering a
representative example problemn, it is demonstrated that a Godu-
nov-projection method performs as well as an accurate centered
finite difference method in cases where the smallest flow scales are
well resolved. In underresolved cases, however, where centered
methods compute solutions badiy polluted with mesh-scale oscilla-
tions, the Godunov-projection method sometimes computes
smooth, apparently physical sclutions. Closer examination indi-
cates that these underresolved Godunov solutions, although con-
vergent when the grid is refined, contain spurious nonphysical vorti-
ces that are artifacts of the underresolution. These artifacts are not
unique to Godunov methods, however, and are observed with other
difference approximations as well. The implication of these results
on the applicability of difference approximations to engineering
flow problems in the underresolved case is discussed. © 1395 Aca-
demic Press, Inc.
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1. INTRODUCTION

In 1989, Bell, Colella, and Glaz [1] introduced a projection
method for the incompressible Navier-Stokes equations that
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combines the projection technique introduced by Chorin [2]
and Colella’s higher-order Godunov advection schemes [3] to
give an overall second-order finite difference method. This
method has been demonstrated to have very attractive properties
for large scale modeling of incompressible or nearly incom-
pressible engineering flows. In the succeeding years, Bell, Col-
ella, and their co-workers have introduced several variants of
the original Bell-Colella—Glaz formulation, including methods
that use an ‘‘approximate’ projection operator [4], extensions
to chemically reacting flows [3, 6], and modifications for adap-
tive mesh refinement [7]. Because the Godunov upwinding
approach stabilizes the computed flows for cell Reynolds num-
bers where a strictly centered finite difference scheme would
produce spurious mesh-size oscillations and often instability,
these Godunov-projection methods would appear to offer the
hope to the design engincer of being able to make routine
simulations in situations where it is not possible to carefully
resolve the smallest scales everywhere in the computed flows.
With currently available computing machines, such underreso-
Jution is often unavoidable. An example is the solution of
problems of any realistic complexity in three space dimensions.
In regions of the flow where the physical viscosity is too small
to be captured properly by the finite difference method, the
Godunov upwinding is expected to “‘do the right thing™” by
representing near-discontinuities with appropriately smoothed
but sufficiently sharp features that maintain the basic appear-
ance, and hopefully the physical properties of the actwal physi-
cal flow, It is the aim of the present paper to address the issue
of whether such underresolved computations using Godunov-
based miethods can be expected to faithfully represent the cor-
rect physical behavior of the fluid flow. Although resolved
computations using a higher-order accurate central difference
approximation to the incompressibie Navier—Stokes equations
are used in this paper to provide reference solutions, this paper
is not intended to provide a comparison between Godunov
methods and other methods, but mainly addresses the issue of
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the reliability of Godunov metheds. We note that a study with
somewhat similar objectives was done by E and Shu for some
ENO-type schemes [8].

Alithough not the main focus of that paper, the authors of
[1] briefly discuss the issue of whether underresolved problems
can be computed in some reasonable way using Godunov-
projection methods. As they also state, the justification typically
given for the physical correctness of such calculations is that
if the structure of the computed solutions is essentially correct
(shear layer placement, etc.), then the numerical dissipation
mechanisms in the finite difference scheme will mimic the
physical dissipation mechanisms, leading to results with the
correct large-scale dynamics. The computational examples pre-
sented in [1] for the evolution of an infinitely thin shear layer
offer “*food for thought,”” but no conclusive evidence for this
proposition. In (9], Bell and Marcus present a computational
study of three-dimensional vortex evolution, in which they are
somewhat more cautious in the interpretation of their resuits
at later times as the dynamics of the solution become more
complicated. Since the infinitely thin shear layer problem is an
extremely difficult one to attack both numerically and theoreti-
cally, we instead consider a related “‘thin’’ shear layer problem.
As will become apparent below, our computations cast doubt
on the validity of the proposition that the numerical disstpation
mechanisms in Godunov-projection methods mimic the physi-
cal dissipation.

With the idea in mind of improving the understanding of
the numerical dissipation mechanisms in Godunov-projection
methods, we present a set of carefully controlled numerical
experiments designed to investigate situations where the small-
est scales of the flow are well-resolved and situations where
they are not. The test cases studied are variations on the finitely
thick double shear layer problem in a doubly periodic domain
presented by Bell, Colella, and Glaz in their introductory paper
[1]. The version of the projection method used in this paper-is
the one introduced by Bell, Colella, and Howeil {10]. While
the results presented in this paper by no means represent an
exhaustive study, the thin shear layer is an important feature
in practical engineering situations, since as a basically unstable
structure it represents one of the important mechanisms for
fluid mixing. The reference solutions used for comparisons are
computed with a centered, finite-difference, vorticity stream-
function method that is fourth-order accurate in both space and
time. The fourth-order Runge—Kutta time integrator adds a
negligible amount of dissipation to the method and no artificial
spatial viscosity is used, so the dominant dissipation mechanism
in the method comes from the physical viscosity terms. Care-
fully controlled convergence studies of the centered method
demonstrate that these are valid reference solutions.

The basic conclosions that can be drawn from the pregent
study are the following:

¢ For problems in which the smallest physical scales are
well resolved the solutions produced by the Godunov-projection
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and fourth-order centered difference methods are virtually in-
distinguishable, The effective artificial viscosity introduced by
the Godunov upwinding appears to be negligibie compared
with the physical viscosity terms, as evidenced by the plots
of energy and enstrophy dissipation for the methods. Visual
inspection, convergence studies, and direct numerical compari-
son with the reference solutions indicate that the Godunov
solutions faithfully represent the true Navier—Stokes solutions.

* For problems in which the smallest physical scales are not
well resolved the appearance of the Godunov solutions is often
qualitatively different than that of the reference solutions. While
in the correct solution each shear layer rolls up into a single
periodically repeated vortex, the under-resolved solutions can
also exhibit additional vortex roll-ups between the main vorti-
ces. Al first glance these additional vortices might appear to
be well-resolved features of the flow. However, there are several
important observations that demonstrate that these are actually
numerical artifacts. The additional vortices represent only smali
perturbations of energy and enstrophy in the flow. Also, as the
mesh size is refined the amplitude of the additional vortices
decreases, although not at the second-order rate that might be
expected of the method. Once the layers are sufficiently re-
solved by the mesh, these artifacts disappear. We also present
evidence to suggest that these artifacts are not solely a property
of Godunov-type methods. Indeed, it is possible to produce
artifacts of similar appearance even with a centered difference
approximation. Thus we conclude that the artifacts are a func-
tion of under-resolution rather than a defect in the fundamental
design of the Godunov difference approximation.

In Section 2, the Godunov-projection method is introduced,
as well as the fourth-order centered-difference method used
to compute the reference solutions. Section 3 describes the
computations and convergence studies. Speculations on the
implications of these artifacts to engineering simulations are
presented in Section 4.

2. THE NUMERICAL METHODS

In two space dimensions the incompressible Navier—Siokes
equations can be written as

U+ (U VU + Vp=rvAU N
V-U=4, (2)

where U7 = {(u, v)' = Ulx, y, 1) is the fiuid velocity vector
with components # and v, the horizontal and vertical velocity,
respectively, p = p(x, v, #) is the fluid pressure, »is the (assumed
constant) fluid viscosity, and subscripts denote partial difterenti-
ation. An equivalent formulation can be written using the Hodge
decomposition theorem, which states that any vector field W
can be decomposed into two parts, one of which is divergence-
free and the other solenoidal. Moreover, these components are
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orthogonal (see, e.g., Chorin [2]).
W=U+V¢, U=PW, Vi=(1-P)W, {3

where P is the implied projection operator that decomposes the
tield. Using P, the momentum equation can be written as

U =P{—(U- VYU + vAU} 4
Ve=(1-P){—(U-V)U + v AU} (5}

Another formulation can be written by using the vorticity
and stream function ¢ as dependent variables. The vorticity is
defined as the curl of the velocity field,

w=VxXU (6)

which is a scalar, for the two space-dimensional case, and the
strearn function satisfies the Cauchy-Riemann eguations,

(u,0) =: (b, — ). (7

In these variables, the incompressible Navier-Stokes equations
are given by

w, = —(uw), — (vw), + vAw (8)

A= —a. %)

The Navier—Stokes equations require that boundary coaditions
be specified. The examples presented in this paper are for a
doubty periodic domain and hence the only boundary conditions
required is that the solutions be doubly pericdic.

2.1, Computational Domain

Both of the numerical methods in this paper are implemented
on the same computational grid. The physical domain in all
problems is the periodic unit square. We use a 2V by 2V square
grid, with uniform cell size h = 1/2" for our spatial discretiza-
tion. Unless otherwise noted, all variables are cell centered,
i.e., the grid location (i, j} corresponds to the physical location

((F = D, (G — ).

2.2.  The Godunou-Projection Method of Bell, Colella,
and Howell

The projection method employed in the numerical studies in
this paper is essentially the same as the one introduced in [10].
For completeness, and also 1o correct some typographical errors
in the original publication, the details of the method are pre-
sented here, In this projection method the velocities and pres-
sure are computed in several steps. In the first step a nondiver-
gence-free prediction of the velocity U'* is computed,
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E";_IDL = -;A,,(U" + Us) — [(U- VYU =V pr='2 (10)
where A, is the standard five-point central difference approxi-
mation to the Laplacian operator, and Vp'~'* is the time-cen-
tered pressure gradient which we assume is available from
the previous time step. The advection term [({/- VYU is
approximated by a Godunov procedure, also described in detail
below. For v # 0 the numerical solution of (10) involves the
solution of a heat-like equation; this is done using a
multigrid iteration.

Next, in the “‘projection’” step of the method, the value of
U* is decomposed into the sum of a divergence free part U™*!
and the gradient of a scalar field ¢, that are then used to update
the velocity and the pressure gradient,

Ur= U+ Ve (11)
Vprtlt = Vpr=i22 + Vi A, (12)

where ¢ is determined by solving the Poisson equation
Ad=V.U* (13)

The form of the projection operator P can be completely
specifted by the choice of the discrete divergence operator D.
Given a choice for D, the discrete gradient operator can be
defined as the adjoint of D which ensures that P is well-posed
and norm reducing. (see, e.g., Chorin [11]}. The centered-differ-
ence approximation to the divergence

_ (i1 — Miz1 ) F Wi —

Ui i- )
DUy, = oy i

(14)

is used, which has as its adjoint the centered-difference gradient

G(d))i,j - (‘f’;ﬂ.,u;h ¢i—l,j’ ¢i.j+1 ;h d’i.;‘—]). (15)
This gives for the discrete form of Eq. {13),
L{¢) = D). (16)

where

_4¢£.j + ¢i+2.j + ¢‘f—2.j + ¢£,j+2 + ¢!,j—2
4h? '

L{d); = DG(); =
(7

Because the stencil of the operator [ decouples into four
distinct substencils, the null-space of L contains any vector that
is constant on each of the stencils. An adaptation of the standard
multigrid methed that respects the decoupling in the interpola-
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tion, averaging, and relaxation operators is used to solve Eq.
(16). This ensures that high frequency errors on each decoupled
stencil are adequately reduced during each multigrid sweep.
Details of this technique are found in [10], '

The approximation of the time-centered advective term
[(U-VYUT*'” uses a second-order Godunov procedure. The
basic idea of the procedure is to use a Taylor series expansion
to calculate time-centered cell edge values of the velocities that
can then be differenced to yield the advective term. As an
example, we consider how the value on the lefi side of the cell
face centered at (i + 3, j, n + 3), UL7F, is computed; the
values on each side of the other faces are computed analogously.

The leading terms of the Taylor series are used to extrapolate
the velocities to cell edges (see Fig. 1 for location of cell
edge variables):

h At
?:11.‘122.}!‘ =U,;+ E(U;!)i.j + ?(U;l):',j- (18)

By using the Navier—Stokes equations, the temporal derivatives
are replaced with spatial derivatives yielding

h At Ar
Ui = Uy + [5 -3 uﬁ,-]w;)f.f — S VU,
A A (15
i) f
+ ? P(AU")M - Efo,

This is approximated in three steps. First predicted edge
values U of the velocity are computed which contain only the
denvative terms from (19) normal to the cell edge:

. h Ar ‘
U."“Hfz.j =Ul+ | 5 — soo-ul; [(UD;
2 2
(20)
{1, ifu,; >0
N
0,

otherwise.

n+1/2,8
U ij+1/2

e

n+1/LR

n+tLL
Uiin;

'y Y . U l+”2,}

[(3)]
n+1f2,T
Uiian

&

FIG. 1. Location of cell variables. The cell center is located at (7, j). Cell
edge values are denoted using half-integer indices. For example, a cell edge
value extrapolated from the left to the right cell face at time level n + § is
denoted by U5,
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The term (U3);; is approximated using fourth-order monoton-
icity preserving slopes (see below). A similar procedure extra-
polates from the right in the cell centered at { + 1, j to obtain
ff{-‘f;‘,’f;”. A method based on the Riemann problem for Burgers’
equation is used to resolve this ambiguity,

U”.-’f.’fff, ifuf; >0,u,; >0,

Ui = QUEES, Wel; <O,ui;<0, (2D
(U + UTED2,  otherwise,

is chosen.

The fourth-order limited difference for approximating the
normal derivative term in Eq. (20) is given by the following.
Define the difference operators

Df(‘}f’)i,j = (¢1+1.j - d)r—a.;‘)/z
D), = (b — i)
Dr(‘i’).}j = (¢£+1.j - 45::;')-

Using these, define

5{im(¢)u —_
{min(?«lD’(cﬁ)f‘,-l, 2D (), i (D) D)) > 0,
0, otherwise,

5f(¢’)i.j = min(|D"(¢f)),-J|, 51im(¢)t,j X sign(DF(¢).)

and

4D(P)) (s T A Phiord) | i
3 , 8(h): )

()., = min(‘ 3

x Sign(D“(d)).-,;)-
Then, the derivative is approximated with

(q—’)x)i.j = 6(9{7)”/5&.1‘

The second step is to add the viscous and the transverse
derivative term in (20) to yield edge values I/, A standard five-
point approximation to the Laplacian for the viscous term is
used and a difference of the computed value U is used to form
the transverse derivative term. Thus,

~ - A At
U{'+112,j = Uf‘+1fz,j - E((U Uy)f,j) + ‘2_ V(AS(U")s.j

Diiein + Oismrn) (Oisorn — Ui
(U/i};,-)i,j _ ( i > J 1.'2)( ._;HIZA i 112)'
V

(22)
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Edge values U?I,Ifgz , are then determined from the left and right
states using a formula analogous to (21). To complete the
approximation of time-centered cell edge values, the pressure
gradient term from Eq. (19) must be included. This is approxi-
mated by performing a MAC-projection on the computed val-
ues 5’,-,,- [10]. We solve

?fi-l.'z.j) (é‘f.jHJ‘Z - 6:‘,;'4/2)

h h ’

(v — J

AX(¢) = DM(O),; = (23)

where A’ is the standard five-point Laplacian approximation,
and then subtract the gradient of ¢ from U?'? to form
UtHE; and UTHE,.

n+142 12 b1y~ Py
Hivinny = Wik
h
b2 n 112 (¢z.j+1 + ¢s+|,j+1)/2 - (¢s.j—1 + ¢i+l.j—-!)/2
UIH.QJ_ Uinpg 2 Zh .

Finally, the values U"*"* are differenced to get the advection
term:

(u!Hlii

W n+1/2
SNy Ay )] (Ur+1fz,

2 h
+112 +172
Ui ) (Ul —

2 h

+142
U? 12, j)

(el +ovl); =

n+1/2
(v|j+1.'2 =

+i2
U

2.3. The Fourth-Order Centered Difference Approximation

The reference solutions used for this study were computed
using a fourth-order accurate hybrid finite-difference/spectral
approximation of the vorticity stream-function formulation of
the Navier—Stokes equaticuns (8), (9). For approximation of the
hybrid method, the same computational grid is used as in the
previous section. Values of the vorticity, velocities, and stream
function are given at each cell center. The right-hand side of
Eq. (8) is approximated with fourth-order finite differences.
Specifically,

{w);; = ‘“Di(um)f.j - D}‘-(Uﬂ’)s.j + VN(CO);,_,-, 24)

where the difference operators D?, defined by

i—2j 8(i- G P} T P
Dy, = 2 89 112h¢ 1)~ i
D4(¢)” ¢1}-2 8(¢f,j~12‘}1¢r.j+1) B ¢i,j+2

and the approximation to the Laplacian is given by
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AY(@)i; = D) + DY)
. _30 5 + 16 1§ + i) ( i—2.4 -+ 42,
i j = 20t 10y )~ b+ i)
D(,j = ~30¢;; + 16{¢h; - ";z(i:‘,zjﬂ) = (2t ¢s,,.‘+2).

A standavd, fourth-order Runge—Kutta method is used to
advance the solution in time. Specifically, let

Fle,u,v),; = _Di(uw)f‘j - D;'-(Um)i,j + VA4(GJ)1,1; (25)

then the time-stepping procedure can be written as
At
o =w"+ ?F(w", ", U")

w ="+ % Flw', u',v")

@’ = 0" + AtF (0, 1, %)

—w + ' + 20+ & A!
3 6

A+l —

w — Fl{&?*, t*, 1°).

At each of the four Runge—Kutta substeps, the velocities
must be recomputed from the vorticity. The first step in doing
so 1is to discretize the Poisson problem (9) and to solve the
resulting problem for the stream function . Since the domain
is doubly periodic, it is convenient to solve (9) in Fourier space.
The true inverse Laplacian operator is used and no additional
spectral filtering is employed. Hence,

mooay
i yy= > S e, (26)
je=wna st

where @, are the discrete Fourier coefficients of the vorticity.

Since the spectral Laplacian involves only real numbers, a
real to real FFT is used in lieu of a complex FFT which reduces
the computational cost of the FFT by approximately one half.
Even with this savings, approximately 70% of the total compu-
tational cost of the method involves solving Eq. (9) on a
Cray YMP.

Once i has been computed, the difference operators from
above are used 1o compute the velocities,

ui; = DY)
_Di(ttt’)i,j-
3, COMPUTATIONAL RESULTS

The numerical example studied in this paper 1s of a doubly
periodic double shear layer. The shear layers are perturbed
slightly at the initial time, which causes them to roll up in time
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PRGI. CODE

CONTOUR FROM -36 TO 38 BY 6

256 X 258 VORTICITY T= 0.80 NU=0.1000E-03 PROJ. CODE

CONTOUR FROM -36 TO 26 BY 6
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128 X 148 VORTICITY T= 0.BO NU=0.1000E-03 PROJ. CODE

CONTCUR FROM 36 TO 3€ BY &

512 X 512 VORTICITY T= 0.80 NU=0.1000E-03

FROI. CGDE

CONTOUR FROM -38 TO 36 BY 6

FIG. 2. Vorticity contours for the *‘thick™ shear layer at time 0,8 for resolutions 64 X 64, 128 X 128, 256 X 256, and 512 X 512, Godunov-projection

method, Layer width parameter p = 30, viscosity » = 1/10,000.

into large vortical structures. The initial conditions are given by

B {tanh(p(y —0.25) forv=0.35; 7
 ltanh(p(0.75 —y)) fory>0.5. )
v = 8sin(27x), (28)

where p is the shear layer width parameter and & is the size of
the perturbation. In all our examples, the perturbation size used
is & = 0.05. The shear layer width is varied to study the effect
of the layer resolution on the computations. The time step At

for the Godunov-projection method is recomputed each step
by setting

At = Chimaxuy], [vy))
¥

where C is the CFL number whose value for each run is 0.9.
The same procedure is used for the centered difference method
but with a CFL number of (1.7.

For the Godunov-projection computations, an initial pressure
gradient field is required for time level n = —3. This is deter-
nuned by an iteration procedure described in [1].
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VORTICITY T= 1.20 NU=0.1000E-03

P LTI T

FKOI. CODE
1A

4T
CONTOUR FROM -26 TQ 36 BY 6

256 X B56

VORTICITY T= 1.20 NU=0.ij000E—
cge AT

03 PROI. CODE

P 12,08

CONTOUR FROM ~38 TG 36 BY €

FIG. 3.
method. Layer width parameter p = 30, viscosity » = 1/10,000.

3.1. The Reference Solutions

The reference solutions used for the studies discussed below
were produced using the vorticity stream-function method de-
scribed in Section 2.3. Convergence studies were performed
on a set of calculations using successively finer meshes. The
error in these calculations was estimated using Richardson ex-
trapolation. Although the theoretical asymptotic convergence
rate of the method is not apparent until the finest meshes, it is
apparent from Table I that the solution converges as the mesh
is refined. The consistency that is apparent in the vorticity
contour plots, energy spectrum plots, energy and enstrophy
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PROJ. CODE

CONTOUR FROM 36 TO 36 BY 6

512 ¥ 512 VORTICITY T= 1.20 NU=0.10G0E-03 PROJ, CODE

¢

CONTOUR FROM ~36 TO 38 BY 6

Vorticity contours for the *‘thick™ shear layer at time 1.2 for resolutions 64 X 64, 128 X 128, 256 X 256, and 512 X 512. Godunov-projection

decay plots for all different resolutions indicates the validity
of the reference solutions as representations of the true solution
of the continuous problem.

3.2. The ““Thick’’ Shear Laver Problem

In this section, we demonstrate that when the double shear
layer problem is well resolved by the compatational mesh, the
results of the Godunov method are virtually indistinguishable
from those obtained with the centered finite-difference method.
Figures 2 through 5 show vorticity contours for the smooth shear
layer test problem. For this example, a layer width parameter of



172

64X B4 VORTICITY T= 0.80 NU=0.1000E-03 VORT. CODE
A RN N L R A A T,

LU L ey v LA e L ERL Ly LA idy

CONTOUR FROM -38 TG 28 BY 6

258 X 256 VORTICITY T= 0.80 NU=0.1000E-03 VORT. CODE
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128 ¥ 128 VORTICITY T= 0.80 NU=0.1000E-03 VORT. CODE

CONTOUR FROM -3¢ TO 36 BY &

512 X 512 VORTICITY T= 0.80 NU=0.10C0E-03 VORT. CODE

CONTOUR FROM -38 TO 36 BY 8

CONTGUR FROM -36 TO 36 BY &

FIG. 4. Vorticity contours of the “‘thick’” shear layer problem at time 0.8 for resolutions 64 X 64, 128 X 128, 256 X 256, and 512 X 512, Centered
finite-difference method. Layer width parameter p = 30, viscosity ¥ = 1/10,000.

p = 30 was used, as in [1]. Figures 2 and 3 show solutions
computed using the Godunov-projection method at times 0.8
and 1.2, respectively. Figures 4 and 5 show solutions. at the
same times, but computed with the centered ditference approxi-
mation. The oscillatory nature of the underresolved centered
method is apparent in the 64 X 64 plots. The solutions obtained
by the two methods on the two finest grids are visually indistin-
guishable. The upper two graphs in Figs. 6 and 7 show the
energy and enstrophy decay of the solutions computed on the
512 X 512 mesh as a function of time. Again, the plots for the
two methods are virtually indistinguishable. This illustrates the
important point that despite the upwind nature of the Godunov

advection step, the Godunov-projection method appears no
more dissipative than a high-order centered difference method.
Figure 6 also shows a graph of the fraction of the total number
of cells at which the limiters in the Godunov method are
switched “‘on’" as a function of the timestep. There are four
curves in the latter plot, corresponding to the four places in the
algorithm where the limiters are used at each timestep. The
graph showing the incidence of limiter activation in the method
is provided to demonstrate that the limiters, which provide
some nonlinear dissipation in the method, are, in fact, switching
on during these calculations (presumably in the region around
the shear layers). It is clear that the limiters are not adversely
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CONTOUR FROM —36 TO 36 BY 6

266 X 258 VORT. COPE

C

=3
)§

VORTICITY T= 1.20 NU=0.1000E-03

17.18

7

CONTOUR FROM —38 TO 36 BY &
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126 x 128 VORTICITY T= 1.20

TR

NU=0.1000E-03

LR by

CONTOUR FROM -38 TO 36 BY 6

512 X 512 VORTICITY T= 1.20 NU=0.1000E-03 VORT. CODE

XG
7

CONTOUR FROM -36 TO 36 BY ©

FIG. 5. Vorticity contours of the *‘thick’” shear layer problem at time 1.2 for resolutions 64 X 64, 128 X 128, 256 X 256, and 512 X 512. Centered
finite-difference method. Layer width parameter p = 30, viscosity » = 1/10,000.

affecting the quality of the computed solutions. Table I shows
the convergence rate estimates for the Godunov method in this
calculation, obtained by Richardson extrapclation. As expected,
the method converges at a second-order rate on this example.

The energy spectrum plots in Figs. 6 and 7 show an approxi-
mation of the average value of the Fourier transform of the
vorticity as a function of the norm of the wavevector k. The
approximation used is given by [12]

k) := [le—k|<l.’2 M\J(l], lz)']
Y Epegern

(29

TABLE 1

L, Errors and Convergence Rates for the Projection Method on the
Thick Shear Layer Problem

Time 32-64 Rate 64-128 Rate 128-256 Rate 256-512
04 134E-2 243 249E3 189 6.73E4 1.88 1.82E4
0.8 705E2 262 1.M4E2 253 198E-3 208 467E4
1.2 751E-2 212 1.72E-2  2.50 3.05E-3 2.20 6.61E-4

Note. In each case, the error was estimated using Richardson extrapolation
between two meshes (columns labeled, e.g., 32-64). The convergence rate
exponent was then estimated from these values by comparing adjacent error
estimates (columns labeled “‘rate*’).
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FIG. 6. The top two figures show the L,-norm of the velocity and the Ly-norm of the vorticity as a function of time for the Godunov-projection method.
The lower left figure shows plots of the spectrum at times 0.4(A), 0.8 (B), 1.2 (C), and 1.6 (D}. The lower right figure shows a plot of the fraction of mesh

cells at which the limiters switch “‘on™’

as a function of time. There are four curves cotresponding to the four places in the method at each timestep where

the limiters are invoked. All plots are for an example with 512 X 512 cells, layer width parameter p = 30, viscosity v = 1/10,000.

where ! := |(;, )|. It is significant that when the two graphs
are superimposed, the behavior of the lower wavenumbers is
identical to within the resolution of the graphs. The oscillations
in the spectra for earlier times are remnants of the symmetry
of the initial data for this example. The differences for higher
wavenumbers bear some comment: One can safely assume that
the spectral decay behavior demonstrated by the fourth-order
centered method (Fig. 7) is a good representation of the true
continuous solutions (see, e.g., calculations in [13, 12]). Be-
cause the graphs are made on a log—log scale, the deviations
for the highest wavenumbers appear quite significant. The spec-

tral plot for the Godunov-projection method in Fig. 6 shows
that there is more energy in the high wavenumbers for this
method than for the centered method. However, the log-log
plot tends to overemphasize this effect and, in fact, for the
refatively short integration times of these simulations the differ-
ence is negligible. Since curves (C) and (D) in the plots are
quite similar, it also appears that the energy in these higher
wavenumbers saturates at a level four orders of magnitude
below the level of the largest components. One still might
speculate that the high wavenumber deviation would become
significant for very long-time integrations, should one choose
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TABLE II touse a Godunov method. We have not investigated this conjec-

L, Errors and Convergence Rates for the Centered Difference ture in detail.
Method on the Thick Shear Layer Problem

3.3. Generation of Spurious Vortices in the *"Thin” Shear
Time 64-128 Rate 128-256 Rate 256-512 Rate 512-1024 Layer Problem

0.4 0268 349 238E2 386 1.64E3 329 1.67E4 This section studies a double shear layer problem, where the

0.8 1.83 3720277 353  24IE-2 380 174E-3  ghear layers are apparently not well resolved. As with the thick

] - - ] shear layer problem, the converged reference solutions show

Note. In each case, the error was estimated using Richardson extrapolation hat th luti . f 2 double sh 1 ith
between two meshes (columns labeled, e.g., 64—256). The convergence rate t a_t e cotrect 50 utl(?n consists of a .Ou e shear layer wit

exponent was then estimated from these values by comparing adjacent error 8 Single roll-up (see Figs. 8 and 9). While the centered method

estimates (columns labeled ‘‘rate’”). performs badly on this problem when the flow in not well
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Godunov-projection method with 128 X 128, 256 X 256, and 512 X 512 cells, lower right, centered finite-difference method with 512 X 512 cells. Layer

width parameter p = 100, viscosity » = 1/20,000).

resolved, the Godunov method always gives smooth solutions
that appear to be well resolved. Convergence studies of the
Godunov calculations demonstate, however, that on coarser
grids additional roll-ups in the shear layer develop, While the
energy in these vortices s relatively small, compared to the
total energy of the solution, they might easily be interpreted
to be physical features in the solution, particularly if not studied
in the context of more resolved calculations of the same
problem.

Figures 8 and 9 show vorticity contours at two different
times for a test problem with a thinner shear layer than the
example in Section 3.2. In this case, a layer width parameter
of p = 100 was used in the initial conditions. The figures show
solutions computed with the Godunov-projection method on
grids of resolution 128 X 128, 256 X 256, and 512 X 512,
and also the reference solution computed using the centered-
difference method with resolution 512 x 512. Figure & is for
time 0.8; Fig. 9 is for time 1.2, It is clear that for the coarser
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128 X 128, 256 X 256, and 512 X 512 cells; lower right, centered finite-difference method with 512 X 512 cells. Layer width parameter p = 100, viscosity

¥ = 1/20,000.

resolutions, the appearance of the Godunov solutions is signifi-
cantly different from the reference solution. In the 256 X 256
solution, a spurious vortex has formed midway between the
periodically repeating main vortex on each shear layer. The
128 X 128 solution shows three spurions vortices along the
shear layer. Unlike a centered method with which it is visnally
apparent when the method goes ‘*bad’’ (see, e.g., the oscilla-
tions in the 64 X 64 resolution plots of Figs. 4 and 5), visual
inspection of, say, the resolution 256 X 256 plots in Figs. 8

and 9, without comparison with computations done at other
resolutions, would not suggest an unconverged solution. It is
only apparent when comparing the solutions to finer grid solu-
tions that, as the method converges with decreasing mesh size,
the spurious vortices disappear. Richardson extrapolation esti-
mates of the error also indicate convergence (see Tables HI
and 1'V), although not at the second-order rate one might hope
for. Tables V and VI present localized convergence results for
the thin shear layer problem. In these tables, the error was



178 BROWN AND MINION

256 X 256 VORTICITY T= 0.80 NU=0.2500E-04 VORT. CODE 256 X 256 VORTICITY T= 1.00 NU=02500E-04 VORT. CODE
’ T RGNS

T

iy o i e il LT

CONTOUR FRCM -70 TO 70 BY 10 CONTOUR FROM ~70 TO 70 BY 10

FIG. 10. Appearance of spurious vortices for *‘thin’’ shear layer problem using the centered finite-difference method. Vorticity contours of the solution
at times 0.8 and 1.0. Layer width parameter p = 100, viscosity » = 1/40,000, 256 X 256 cells. The high-frequency oscillations result from the underresolution
of the centered finite difference method and eventually drive the computation unstable.

TABLE III ) TABLE 1V
L, Emors and Convergence Rates for the Projection Method on the L, Errors and Convergence Rates for the Projection Method on the
Thin Shear Layer Problem with p = 100 and v = 1/10,000 Thin Shear Layer Problem with p = 100 and » = 1/2G,000

Time  32-64 Rate 64-128 Rate 128-256 Rate 256--512 Time 32-64 Rate  64-128 Rate 128-256 Rate 256-512

0.4 1.07E-1 0.68 6.67E-2 170 2.04E-2 277 298E-3 ¢4  1.13E-1 058 7.638E-2 115 345E-2 259 3.72E3
0.8  239E-1 0.13  2.1BE-i 051 153E-1 246 278E-2 08 245E-1 -015 271E-] 052 1.89E-1 098 9.68E-2
1.2 L9IE-1  —0.16 214E-1 —-022 250E-1 201 6.18E2 1.2 201E-1 -018 228E-1 029 278E-1 067 LME-|

Note. In each case, the error was estimated using Richardson extrapolation Note. In each case, the error was estimated using Richardson extrapolation
between two meshes (columns labeled, e.g., 32-64). The convergence rate  between two meshes (columns labeled, e.g., 32-64). The convergence rate
exponent was then estimated from these values by comparing adjacent error  exponent was then estimated from these values by comparing adjacent error
estimates (columns labeled ‘‘rate™). estimates (columns labeled “‘rate’’).

TABLE V

Local L, Errors and Convergence Rates for the Proiection Method on the Thin
Shear Layer Problem in the Region of the Main Spurious Vertex

Time 32 Rate 64 Rate 128 Rate 256 Rate 512

0.4 2.92 029 239 166 757E-1 374 56VEZ2  1.66  1.80E-2
038 3.57 G.10 334 018 2954 135 115 792  4.76E-2
1.2 318 —007 334 026 278 1.01 138 9.71 1.65E-2

Note. In this case, the errors were estimated by comparing with a 1024 X 1024 reference
solution. Problems with p = 100 and » = 10,000.
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p = 100, viscosity v = 1/10,000. Viscosity is larger than in Fig. §, and so spurious vortices are not as prominent at the corresponding resolution.

TABLE VI

Local L; Errors and Convergence Rates for the Projection Method on the
Thin Shear Layer Problem in the Region of the Main Spurious Vortex

Time 32 Rate 64 Rate 128 Rate 256 Rate 512

04 348 0.13 317 095 164 323 175E2 254 30IE2
0.8 383 007 366 (12 336 012 309 3.24  3.26E-2
12 327 -G11r 352 047 32 Q030 253 333 S25E2

Note. In this case, the errors were estimated by comparing with a 1024 X 1024
reference solution. Problems with p = 100 and » = 20,000.
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parameter p = 100, viscosity » = 1/40,000. Viscosity is smaller than in Fig. 8, and so spurious vortices are more prominent at the corresponding resolution.

estimated by comparing the solutions with a 1024 X 1024
reference solution in a localized region that includes the spuri-
ous vortex. It is interesting that until the problem is sufficiently
resolved for the spurious vortex to disappear, there is effectively
no convergence in this part of the flow. Another somewhat
alarming property of the under-resolved solutions is illustrated
by the plots of the kinetic energy and enstrophy decay as a
function of time for a resolved and an underresolved solution
shown in Fig. 13. Despite the substantial difference between
the two solutions, the energy and enstrophy plots are nearly

indistinguishable, which indicates that such plots cannot be
used as a measure of the reliability of a particular solution.
The appearance of the spurious voertices is not an artifact
unique to this particular method. We made several tests of
different versions of the Godunov-projection method to verify
that these artifacts were not a peculiarity of the particular
method we used. In one case, we disabled the limiters, resulting
in a strictly upwind centered (Fromm’s) method. We also
changed the form of the projection operator from the “‘exact’’
projection of [10], to an “‘approximate’ projection operator
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are nearly indistinguishable.

(cf. [4]). Neither variation produced any noticeable difference in
the results. Both Rider [14] and Henshaw [15] report observing
similar artifacts using a Lax-Wendroff method and a centered
fourth-order difference primitive variable-based method [16],
respectively. The beginnings of a spurious rollup are evident
as well in some of the published calculations of E and Shu [8]
using an ENO method. In Fig. 10 we show a computation with
the centered-difference vorticity stream-function method of the
present paper in which spurious vortices are clearly formed in
an underresolved computation of the thin shear layer problem.
The method becomes unstable shortly after the time of the
second plot in that figure. A similar type of phenomena occurs

with the point vortex method when not regularized appropri-
ately. In that method for incompressible flow simulation, com-
puter roundoff can cause spurious rollups to occur, again with-
out any apparent serious breakdown of the method (see [17,
18]).

The appearance of the spurious vortices in these calculations
is clearly an underresolution effect. This is somewhat surpris-
ing, since, for example, in Fig. §, the shear layer is represented
with approximately seven cells across its width at the thinnest
point which might normally be considered sufficient resolution
for an engineering calculation. However, the following argu-
ment demonstrates the validity of this claim. It is well known
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that for similar flows, the smallest scale in a two-dimensional
Navier—Stokes flow scales with the square-root of the viscosity
(see, e.g., [12]). Thus, artifacts that are due to an underresolution
effect should become more pronounced as the viscosity is de-
creased and less pronounced as it is increased. In fact, we would
expect that, given the results shown in Figs. 9 and 10, the
results of a 128 X 128 calculation with » = 1/20,000 should
be similar to a 256 X 256 calculation with v = 1/40,000.
Similarly, a 128 X 128 calculation with » = 1/10,000, should
be comparable to 256 X 256 calculation with » = 1/20,000.
This is indeed the case, as shown in Figs. 11 and 12.

4. DISCUSSION

Whether or not underesolved Godunov-projection computa-
tions are useful is ceriain 10 be a controversial issue. Our objec-
tive in this paper was not to decide this issue, but to present a
careful study so that users of the method can make informed
decisions on the validity of their solutions. Indeed, in realistic
engineering situations the decision of which method to use can
often involve complex considerations that are certainly beyond
the scope of this paper. In this section we offer some suggestions
on how the results of Section 3 can be interpreted. The examples
presented in that section demonstrate that the behavior of the
Godunov-projection method (and, indeed, any method) for in-
compressible flow simulations when the solutions are not well
resolved, can differ substantially from physical reality. If one
is concerned with studying the detailed behavior of the incom-
pressible Navier—Stokes equations, for example, one must be
sure with this method, as with any method, that the solutions
are well resolved by the computational mesh before drawing
any conclusions. As we have demonstrated it is not sufficient
that the computed solutions appear smooth and well-resolved;
considered individually, the examples containing spurious vor-
tices attest to this fact, Tn the cases where the solutions are
sufficiently resolved, the Godunov-projection method produces
results virtually identical to the reference solution method. We
believe that the differences in the energy spectrum plots support
the preference of a centered method to the Godunov-method
for studies where detailed solution resolution is important. In
addition, since the centered methods fail rather badly in the
under-resolved case, it is somewhat easier to know when one
is properly resolving the computed solutions for those methods,
Also, as is well known, the operation count for a typical centered
method is significantly less than for Godunov methods since
the calculation of the convective derivatives is so much simpler,
even for a spatially fourth-order method, than for a Godunov
method. However, as we argued above, the differences in the
energy spectra are really not that substantial, and in fact, the
similarities between the two types of methods, as evidenced in
those plots and in the plots of energy and enstrophy, are quite
striking. These similarities attest to the fundamental integrity
of the Godunov-projection methods.

While the behavior of the Godunov-projection methods on

.
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well-resolved problems is important to understand, one must
realize that this was not the “*design point’” for these methods.
Godunov methods for approximating the advective terms in
the incompressible Navier—Stokes equations were developed
with the hope of being able to treat underresolved problems in
a robust and physically meaningful, if not entirely accurate,
way. Due to constraints imposed by the size of computers and
the cost of computing, the engineer might be forced to resolve
only the pa.rts of a flow with the most engineering significance,
leaving the less important regions in the flow under-resolved.
A significant example of this is with adaptive methods, where
it is often routine to lower the resolution in regions where such
underersolution has no influence on the quantities of practical
mterest [19]. A warning here, however, is that adaptive mesh
refinement must be used carefully since abrupt changes in mesh
spacing in an underresclved flow can also introduce perturba-
tions that may cause unphysical features such as spurious vorti-
ces to form in the calculation. It is therefore desirable to have
a method that performs well in both regimes of the computation.
Thus, while the correct details may be simulated in the more
resolved parts of the computation, simply capturing the gross
properties of the flow correctly in underresolved regions may be
sufficient. The similarity of the energy, enstrophy, and energy
spectra of the various underresolved and resolved examples in
the previous section indicate that the Godunov method is, in a
certain sense, representing the fluid behavior in a physically
meaningful way, even when underresolving the flow. E and
Shu [8] found in their ENO calculations that total circulation
was computed correctly in underresolved sitvations, and we
speculate that this would be the case for the Godunov calcula-
tions as well, .

It is tempting also to compare these underresolved computa-
tions with the zero-width shear layer computations presented
in [1]. In that paper, computations are presented with initial
conditions (27), where p is effectively set to . Comparisons
for pure Euler and various finite Reynolds numbers are pre-
sented. The Re = 5000 case in [1] is very similar in appearance
to some of the thin shear layer examples in the present paper.
As Re —» %, however, the number of vortices in each layer
increases. For the Euler calculations, the authors of [1] observed
also that as the mesh is refined, the characteristic wavelength
of the small scale structures appears to increase linearly with
the number of gridpoints with no apparent convergence in the
limit of infinitely small mesh size. One might speculate that
such a breakup of the shear layer is somehow characteristic of
incompressible Euler flow; however, it would be inappropriate
to draw such a conclusion from the computations in [1]. In
fact, it is difficult to conceive of how this question might be
conclusively addresssed using finite difference methods. The
present study addressed a somewhat different question, that of
the convergence of difference approximations of a shear layer
with fixed finite initial width. For each finite Reynolds number,
as the mesh-size is decreased, the solution converges to a single
periodic vortex. We speculate that the same convergence behav-
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ior would be observed for thinner initial shear layers. If this
speculation were true, it would suggest that the limiting behav-
ior as both Re — 9 and p — o is just a single vortex roll as
with the finite-thickness, finite Reynolds number cases. Again,
this would be difficult to verify numerically with finite-differ-
ence methods. On the other hand, the problem of a shear layer
perturbed by a single long-wavelength mode might not have
substantial physical relevance to begin with. A thorough study
of the Re —» « problem should also include the effect of more
complex perturbations. This is, of course, beyond the scope of
the present paper.

In summary, from an engineer’s perspective, we have charac-
terized a type of artifact that may occur in underresolved calcu-
lations with Godunov-projection methods. An understanding
of such potential artifacts is important for proper interpretation
when making routine simulations, as it would be with any tool
in the engineer’s toolbox. The evidence we have presented
regarding behavior of the gross properties of underresolved
flows suggest that in certain cases these results might be ade-
quate. Making that judgement is not really the point of the
present study, however, This paper simply presents information
that can be used, along with other considerations to help make
reasonable decisions for the particular situation involved.
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the staterments in the two paragraphs show the affiant's full knowledge and belief as to the circumstances and
conditions under which stockholders and security holders whe de not appear upon the books of the company as
trustees, hold stock and securities in a capacity other than that of a bona fide owner, Names and addresses of
individuals who are stockhalders of a corporation which itself'is a steckholder or holder of bonds, mortgages, or other
securities of the publishing corporation have been inclnded in parsgraphs 2 and 3 when the interests of such
mdividuals are equivalent to [ percent or more of the total amount ofp the stock or secunitias of the publishing

corporation.

Total no, copies printed: average no. copies each issue during preceding 12 months: 141%, single issue nearest to filing
date: 1750. Paid circulation (a) to term subscribers by mail, camier delivery, or by other means: average no. copies each
issue during preceding 12 months: 828, single issue nearest to filing date: 1114, (B) Sales through agents, news dealers,
or ctherwise: average no. copies each issue during preceding 12 months: 0; single issue nearest to filing date: 0. Free
distribution by mail, cartier delivery, or by other means; average ne. copies each ssue during preceding 12 months: 60;
single wssue nearest 1¢ filing date: 60. Total no. of copies distabuted: average no. copies each 1ssue dunng preceding 12

months: 888, single issue nearest to filing date: 1174

(Signed) Evelyn Sasmor, Senior Vice President



